Love Me Love My Phages

  • Home
  • Love Your Phages
  • George Eliava Institute
  • eat-me-the-soviet-method-for-attacking-infection
  • Phage Therapy
  • phage-therapy-and-cholera---1
  • Cocktail That Cures
  • Phage Therapy in Agriculture and Animals - 1
  • Phage Therapy_Past History and Future Prospects
  • bdellovibrio-a-predatory-bacteria -1
  • uk - first-superbug-phage-clinical-trial
  • Bacteriophages and Sleeping Sickness
  • The MRSA Problem
  • The Use of Bacteriophages Against Infections
  • Virises vs Superbugs
  • Bacterias natural born killers
  • The Killers Within Prologue
  • The Killers Within - The Silent War
  • Bacteriophages as Antibiotics
  • The Cocktail That Cures
  • Phage Therapy - Abstracts From The Scientific Area
  • Phage production goes large scale
  • Novel alternatives to antibiotics
  • Phages channel their resources
  • Viral defense against Listeria in Foods
  • Bacteriophage Therapy a Revitalized Therapy
  • US Phage Therapy Clinics in Mexico
  • E coli Phage Therapy Implications
  • Phage Therapy and E coli in Livestock
  • Bacteriophage Therapy in Western Medicine
  • Scientists Discover Exciting New MRSA Fighter
  • The New Antibiotics
  • Support Those Who Help Us Make This Site Possible
  • SCIENCE FRIDAY - MP3 FILES
  • Division M- Bacteriophage
  • A Glossary Defining Some Terms For Phage Biology
  • Bacteriophages on the World Wide Web
  • Major Discoveries Made With Bacteriophages
  • W W C Topley and the Missing Phage Reference
  • Lives At Risk From Drug Resistant Bug
  • A Killer In Our Midst
  • Adelaide RAH Superbug Outbreak Worsens
  • Bug At Adelaide RAH Infects More
  • US Meat Sector Target Of Listeria Technology
  • Microscope Dangers
  • Therapy with a Nonreplicating GM Phage
  • Phage Therapy - The Escherichia coli Experience
  • E-coli Phage Human Safety Tests in Water
  • Thank Yous
  • Phages in Treating Trial of e coli in Chickens
  • Phages_Pseudomonas aeruginosa Septicemia in Mice
  • Hello World
  • Using Phage Viruses to Help Fight Infection
  • Georgia an Unlikely Stronghold for Bacteriophage
  • Bacteriophage method to antimicrobial drugs
  • 48 Hours CBS on Bacteriophages
  • An infant in septic shock _ Commentary
  • An infant in septic shock _ Where Now
  • Hospital horror
  • Anthrax stopper
  • Phage R and D Companies
  • Viruses vs Superbugs
  • The Next Phage
  • Statins Reduce Infection
  • Statins vs Bacteria
  • STATINS REDUCE SEPIS IN DIALYSIS
  • Statins Can Prevent A Second Stroke
  • Contact - Love Me Love My Phages
  • Statins May Help One Brit in Six Reach 100
  • Statins Help Slow Down Multiple Sclerosis
  • New Way To Fight Superbugs inc With Tears
  • Phages vs Fireblight Disease - 1
  • Company Develops Natural Way to Fight E coli
  • First 'virophage' could take the fight to viruses
  • Sputnik virophage
  • Virophage - the virus eater
  • Phage Biotech Israel


Bacteriophage genomics method to antimicrobial drug discovery published

 

Bacterial Viruses; Bacteriophage genomics method to antimicrobial drug discovery published;
Drug Week   02-13-2004



Bacterial Viruses;
Bacteriophage genomics method to antimicrobial drug discovery published

ISSN: 15316440
Publication Date: 02-13-2004
Page: 38
Type: Periodical
Language: English

2004 FEB 13 - (NewsRx.com & NewsRx.net) -- Identifying the targets that bacterial viruses, or phages, use to halt bacterial growth and then screening against those targets for small molecule inhibitors that attack the same targets provides a unique platform for the discovery of novel antibiotics.

Researchers from Montreal-based PhageTech, Inc., describe in the February issue of Nature Biotechnology this novel method for discovering new classes of antibiotics.

"Over the course of evolution, the multitudes of phages that attack bacteria have developed unique proteins that bind to and inactivate (or redirect) critical cellular targets within their prey," said Jing Liu, PhD, corresponding author of the publication. "This binding shuts off key metabolic processes in the bacteria, diverting those organisms from their own growth and reproduction to the production of new phage progeny. We believe these phage- identified bacterial 'weak spots' will provide useful screening targets for discovering the sorts of truly novel antibiotics needed to combat growing antibiotic resistance."

The publication's authors used a high-throughput phage genomics strategy to identify novel 31 novel polypeptide families that inhibit Staphylococcus aureus growth when expressed in the bacteria. Several of these were found to attack targets essential for bacterial DNA replication or transcription. They then employed the interaction between a prototypic phage peptide, ORF104 of phage 77, and its bacterial target, DnaI, to screen for small molecule inhibitors. Using this strategy, the researchers found several novel compounds that inhibited both bacterial growth and DNA synthesis.

"This strategy offers several benefits as a novel approach to antimicrobial drug discovery," said Jinzi J. Wu, MD, PhD, PhageTech vice president, R&D - biology. "First, the bacterial targets identified in this manner are evolutionarily validated as important to bacterial growth and potentially susceptible to inactivation by small molecule drugs. This allows us to quickly pinpoint the most promising anti-microbial targets from among thousands of possible candidates. Second, this approach provides a ready-to-use screening assay based on inhibition of interactions between a phage peptide and its bacterial target."

"The fight against growing bacterial resistance requires new classes of antibiotics against novel targets. Our strategy of screening for compounds that address the same antibacterial targets attacked by phages is a very good way of identifying novel compounds against many different bacterial species," concluded Wu.

Applying its novel antibiotic discovery platform, PhageTech has identified eight novel antimicrobial targets against which the company is screening chemical libraries and applying medicinal chemistry to further refine and evaluate those inhibitors. PhageTech has also continued to expand its phage genomics platform from Staphylococcus aureus to other bacterial pathogens including Streptococcus pneumoniae and Pseudomonas aeruginosa.

This article was prepared by Drug Week editors from staff and other reports. Copyright 2004, Drug Week via NewsRx.com & NewsRx.net.

Copyright 2004, Drug Week via NewsRx.com & NewsRx.net

Make a Free Website with Yola.