Love Me Love My Phages

  • Home
  • Love Your Phages
  • George Eliava Institute
  • eat-me-the-soviet-method-for-attacking-infection
  • Phage Therapy
  • phage-therapy-and-cholera---1
  • Cocktail That Cures
  • Phage Therapy in Agriculture and Animals - 1
  • Phage Therapy_Past History and Future Prospects
  • bdellovibrio-a-predatory-bacteria -1
  • uk - first-superbug-phage-clinical-trial
  • Bacteriophages and Sleeping Sickness
  • The MRSA Problem
  • The Use of Bacteriophages Against Infections
  • Virises vs Superbugs
  • Bacterias natural born killers
  • The Killers Within Prologue
  • The Killers Within - The Silent War
  • Bacteriophages as Antibiotics
  • The Cocktail That Cures
  • Phage Therapy - Abstracts From The Scientific Area
  • Phage production goes large scale
  • Novel alternatives to antibiotics
  • Phages channel their resources
  • Viral defense against Listeria in Foods
  • Bacteriophage Therapy a Revitalized Therapy
  • US Phage Therapy Clinics in Mexico
  • E coli Phage Therapy Implications
  • Phage Therapy and E coli in Livestock
  • Bacteriophage Therapy in Western Medicine
  • Scientists Discover Exciting New MRSA Fighter
  • The New Antibiotics
  • Support Those Who Help Us Make This Site Possible
  • SCIENCE FRIDAY - MP3 FILES
  • Division M- Bacteriophage
  • A Glossary Defining Some Terms For Phage Biology
  • Bacteriophages on the World Wide Web
  • Major Discoveries Made With Bacteriophages
  • W W C Topley and the Missing Phage Reference
  • Lives At Risk From Drug Resistant Bug
  • A Killer In Our Midst
  • Adelaide RAH Superbug Outbreak Worsens
  • Bug At Adelaide RAH Infects More
  • US Meat Sector Target Of Listeria Technology
  • Microscope Dangers
  • Therapy with a Nonreplicating GM Phage
  • Phage Therapy - The Escherichia coli Experience
  • E-coli Phage Human Safety Tests in Water
  • Thank Yous
  • Phages in Treating Trial of e coli in Chickens
  • Phages_Pseudomonas aeruginosa Septicemia in Mice
  • Hello World
  • Using Phage Viruses to Help Fight Infection
  • Georgia an Unlikely Stronghold for Bacteriophage
  • Bacteriophage method to antimicrobial drugs
  • 48 Hours CBS on Bacteriophages
  • An infant in septic shock _ Commentary
  • An infant in septic shock _ Where Now
  • Hospital horror
  • Anthrax stopper
  • Phage R and D Companies
  • Viruses vs Superbugs
  • The Next Phage
  • Statins Reduce Infection
  • Statins vs Bacteria
  • STATINS REDUCE SEPIS IN DIALYSIS
  • Statins Can Prevent A Second Stroke
  • Contact - Love Me Love My Phages
  • Statins May Help One Brit in Six Reach 100
  • Statins Help Slow Down Multiple Sclerosis
  • New Way To Fight Superbugs inc With Tears
  • Phages vs Fireblight Disease - 1
  • Company Develops Natural Way to Fight E coli
  • First 'virophage' could take the fight to viruses
  • Sputnik virophage
  • Virophage - the virus eater
  • Phage Biotech Israel


 Love Me Love My Phages

http://www.medicalnewstoday.com/articles/203418.php

New Way To Fight Superbugs Using

Natural Enzymes In Tears And Other Body

Fluids

Main Category: MRSA / Drug Resistance

Also Included In: Infectious Diseases / Bacteria / Viruses; Biology / Biochemistry

Article Date: 04 Oct 2010 - 10:00 PDT

In the scramble to find alternative ways to stem the rise of superbugs, scientists from many fields are looking everywhere for solutions, including revisiting one that was proposed over 80 years ago: identifying natural "lytic" enzymes in body fluids like tears and saliva and other sources, that are capable of attacking bacteria, especially antibiotic-resistant ones like MRSA.

Now a new US study, by a team from the Georgia Institute of Technology in Atlanta and the University of Maryland in Rockville, published on 4 October in the Institute of Physics journal Physical Biology, describes the results of a pioneering method that can identify which lytic enzymes are the most effective at killing unfriendly bacteria, including superbugs.

Lytic enzymes were first spotted by Alexander Fleming in 1923, five years before he discovered penicillin; he noticed that enzymes present in mucus samples was capable of killing bacteria. But then penicillin came along, laying the ground for what we now know as antibiotics, and lytic enzymes were quietly forgotten.

However, antibiotic-resistant superbugs now demand that we consider a different approach to the "one size fits all" therapy of current antibiotics, which is considered partly responsible for their rise in the first place.

An advantage of lytic enzymes is that each type targets a limited range of bacteria, so in theory it should be possible to find ones that kill undesirable bacteria while leaving the "friendly" ones alone.

Now study authors Joshua Weitz and Gabriel Mitchell, quantitative biologists at the Georgia Institute of Technology, and Daniel Nelson, a biochemist from the University of Maryland, have shown it is possible on a microscopic scale, to work out how powerful lytic enzymes are at destroying bacteria by finding the rate at which they pierce the bacterial cell walls (the process of "lysis"), thereby causing the organisms to explode to death under the force of their own internal pressure.

In their paper they explained how they observed light passing through a solution of bacteria in a similar way to astrophysicists observing light from far-away galaxies: by measuring the amount and properties of the light they could "infer processes at a far different scale".

Previous attempts to characterize lytic enzymes have used techniques based on synthetic substrates: this has proved difficult because lytic enzymes "bind to the complex superstructure of intact cell walls", wrote the researchers.

The new method developed by Weitz and colleagues, which they described as "based on turbidity assays", allows them to predict the cell level processes of bacterial death by measuring the rate at which the lytic enzymes clear a "cloudy" (turbid) solution of living bacteria, without having to use a synthetic substrate.

 

Love Me Love My Phages

Make a Free Website with Yola.