Love Me Love My Phages

  • Home
  • Love Your Phages
  • George Eliava Institute
  • eat-me-the-soviet-method-for-attacking-infection
  • Phage Therapy
  • phage-therapy-and-cholera---1
  • Cocktail That Cures
  • Phage Therapy in Agriculture and Animals - 1
  • Phage Therapy_Past History and Future Prospects
  • bdellovibrio-a-predatory-bacteria -1
  • uk - first-superbug-phage-clinical-trial
  • Bacteriophages and Sleeping Sickness
  • The MRSA Problem
  • The Use of Bacteriophages Against Infections
  • Virises vs Superbugs
  • Bacterias natural born killers
  • The Killers Within Prologue
  • The Killers Within - The Silent War
  • Bacteriophages as Antibiotics
  • The Cocktail That Cures
  • Phage Therapy - Abstracts From The Scientific Area
  • Phage production goes large scale
  • Novel alternatives to antibiotics
  • Phages channel their resources
  • Viral defense against Listeria in Foods
  • Bacteriophage Therapy a Revitalized Therapy
  • US Phage Therapy Clinics in Mexico
  • E coli Phage Therapy Implications
  • Phage Therapy and E coli in Livestock
  • Bacteriophage Therapy in Western Medicine
  • Scientists Discover Exciting New MRSA Fighter
  • The New Antibiotics
  • Support Those Who Help Us Make This Site Possible
  • SCIENCE FRIDAY - MP3 FILES
  • Division M- Bacteriophage
  • A Glossary Defining Some Terms For Phage Biology
  • Bacteriophages on the World Wide Web
  • Major Discoveries Made With Bacteriophages
  • W W C Topley and the Missing Phage Reference
  • Lives At Risk From Drug Resistant Bug
  • A Killer In Our Midst
  • Adelaide RAH Superbug Outbreak Worsens
  • Bug At Adelaide RAH Infects More
  • US Meat Sector Target Of Listeria Technology
  • Microscope Dangers
  • Therapy with a Nonreplicating GM Phage
  • Phage Therapy - The Escherichia coli Experience
  • E-coli Phage Human Safety Tests in Water
  • Thank Yous
  • Phages in Treating Trial of e coli in Chickens
  • Phages_Pseudomonas aeruginosa Septicemia in Mice
  • Hello World
  • Using Phage Viruses to Help Fight Infection
  • Georgia an Unlikely Stronghold for Bacteriophage
  • Bacteriophage method to antimicrobial drugs
  • 48 Hours CBS on Bacteriophages
  • An infant in septic shock _ Commentary
  • An infant in septic shock _ Where Now
  • Hospital horror
  • Anthrax stopper
  • Phage R and D Companies
  • Viruses vs Superbugs
  • The Next Phage
  • Statins Reduce Infection
  • Statins vs Bacteria
  • STATINS REDUCE SEPIS IN DIALYSIS
  • Statins Can Prevent A Second Stroke
  • Contact - Love Me Love My Phages
  • Statins May Help One Brit in Six Reach 100
  • Statins Help Slow Down Multiple Sclerosis
  • New Way To Fight Superbugs inc With Tears
  • Phages vs Fireblight Disease - 1
  • Company Develops Natural Way to Fight E coli
  • First 'virophage' could take the fight to viruses
  • Sputnik virophage
  • Virophage - the virus eater
  • Phage Biotech Israel


Sea Sponge Extract Conquers Resistant Bacteria

Science News – 14 Mar 09

Science News has an article on research into a compound found in a particular kind of sea sponge that seems to have the ability to restore antibiotics' effectiveness against resistant bacteria. The hope is that, since the compound is not itself deadly or even harmful to bacteria, it may skew the antibiotic-bacteria arms race in our favor. "Chemical analyses of the sponge's chemical defense factory pointed to a compound called algeferin. Biofilms, communities of bacteria notoriously resistant to antibiotics, dissolved when treated with fragments of the algeferin molecule. And new biofilms did not form. So far, the algeferin offshoot has, in the lab, successfully treated bacteria that cause whooping cough, ear infections, septicemia and food poisoning. The compound also works on... [MRSA] infections, which wreak havoc in hospitals. 'We have yet to find one that doesn't work,' says [one of the researchers]."

 

Sponge’s secret weapon restores antibiotics’ power

Bacteria treated with compound lose their resistance

By Laura Sanders

March 14th, 2009; Vol.175 #6 (p. 16)

 

CHICAGO — A chemical from an ocean-dwelling sponge can reprogram antibiotic resistant bacteria to make them vulnerable to medicines again, new evidence suggests.

Ineffective antibiotics become lethal once again for bacteria treated with the sponge compound, chemist Peter Moeller reported February 13 at the American Association for the Advancement of Science annual meeting.

“The potential is outstanding. This could revolutionize our approach to thinking about how infections are treated,” comments Carolyn Sotka of the National Oceanic and Atmospheric Administration’s Oceans and Human Health Initiative in Charleston, S.C.

Everything living in the ocean survives in a microbial soup, under constant bombardment from bacterial assaults. Researchers led by Moeller, of Hollings Marine Laboratory in Charleston, found a sponge thriving in the midst of dead organisms. This anomalous life amidst death raised an obvious question, says Moeller: “How is this thing surviving when everything else is dead?”

Chemical analyses of the sponge’s chemical defense factory pointed to a compound called ageliferin. Biofilms, communities of bacteria notoriously resistant to antibiotics, dissolved when treated with fragments of the ageliferin molecule. And new biofilms did not form.

So far, the ageliferin offshoot has, in the lab, successfully resensitized bacteria that cause whooping cough, ear infections, septicemia and food poisoning. The compound also works on Pseudomonas aeruginosa, which causes horrible infections in wounded soldiers, and MRSA infections, which wreak havoc in hospitals. “We have yet to find one that doesn’t work,” says Moeller.  

And the results may not just apply to bacteria in communities. The compound is able to reprogram antibiotic-resistant bacteria that don’t form biofilms. When bacteria are treated with the compound, antibiotics that usually have no effect are once again lethal. This substance may be the first one that can eliminate bacteria's resistance, Moeller says. “This resensitization is brand new.”

And the problem of perpetuating a bacterial-resistance arms race, in which bacteria rapidly develop countermeasures against new antibiotics, may be avoided entirely with the new compound. “Since the substance is nontoxic to the bacterium, it’s not throwing up any red flags,” says Moeller.

Other than “doing something really funky that we’re excited about,” researchers don’t yet know how this compound interferes with bacterial resistance to antibiotics, says Moeller. The compound may sneak by bacteria’s sensors that trigger new ways to combat antibiotics. Bacteria continually treated with this compound for three months are still susceptible to antibiotics.

The research is still in very early phases.

“Everyone would like to see this in antibiotic trials tomorrow,” Moeller says, but treatments for human infections are a long way off.

Sotka agrees. “Of course, we need clinical trials to take it to the next level,” she says.

 

http://www.sciencenews.org/view/generic/id/40894/title/Sponge%27s_secret_weapon_restores_antibiotics%27_power

 

Make a Free Website with Yola.