Love Me Love My Phages

  • Home
  • Love Your Phages
  • George Eliava Institute
  • eat-me-the-soviet-method-for-attacking-infection
  • Phage Therapy
  • phage-therapy-and-cholera---1
  • Cocktail That Cures
  • Phage Therapy in Agriculture and Animals - 1
  • Phage Therapy_Past History and Future Prospects
  • bdellovibrio-a-predatory-bacteria -1
  • uk - first-superbug-phage-clinical-trial
  • Bacteriophages and Sleeping Sickness
  • The MRSA Problem
  • The Use of Bacteriophages Against Infections
  • Virises vs Superbugs
  • Bacterias natural born killers
  • The Killers Within Prologue
  • The Killers Within - The Silent War
  • Bacteriophages as Antibiotics
  • The Cocktail That Cures
  • Phage Therapy - Abstracts From The Scientific Area
  • Phage production goes large scale
  • Novel alternatives to antibiotics
  • Phages channel their resources
  • Viral defense against Listeria in Foods
  • Bacteriophage Therapy a Revitalized Therapy
  • US Phage Therapy Clinics in Mexico
  • E coli Phage Therapy Implications
  • Phage Therapy and E coli in Livestock
  • Bacteriophage Therapy in Western Medicine
  • Scientists Discover Exciting New MRSA Fighter
  • The New Antibiotics
  • Support Those Who Help Us Make This Site Possible
  • SCIENCE FRIDAY - MP3 FILES
  • Division M- Bacteriophage
  • A Glossary Defining Some Terms For Phage Biology
  • Bacteriophages on the World Wide Web
  • Major Discoveries Made With Bacteriophages
  • W W C Topley and the Missing Phage Reference
  • Lives At Risk From Drug Resistant Bug
  • A Killer In Our Midst
  • Adelaide RAH Superbug Outbreak Worsens
  • Bug At Adelaide RAH Infects More
  • US Meat Sector Target Of Listeria Technology
  • Microscope Dangers
  • Therapy with a Nonreplicating GM Phage
  • Phage Therapy - The Escherichia coli Experience
  • E-coli Phage Human Safety Tests in Water
  • Thank Yous
  • Phages in Treating Trial of e coli in Chickens
  • Phages_Pseudomonas aeruginosa Septicemia in Mice
  • Hello World
  • Using Phage Viruses to Help Fight Infection
  • Georgia an Unlikely Stronghold for Bacteriophage
  • Bacteriophage method to antimicrobial drugs
  • 48 Hours CBS on Bacteriophages
  • An infant in septic shock _ Commentary
  • An infant in septic shock _ Where Now
  • Hospital horror
  • Anthrax stopper
  • Phage R and D Companies
  • Viruses vs Superbugs
  • The Next Phage
  • Statins Reduce Infection
  • Statins vs Bacteria
  • STATINS REDUCE SEPIS IN DIALYSIS
  • Statins Can Prevent A Second Stroke
  • Contact - Love Me Love My Phages
  • Statins May Help One Brit in Six Reach 100
  • Statins Help Slow Down Multiple Sclerosis
  • New Way To Fight Superbugs inc With Tears
  • Phages vs Fireblight Disease - 1
  • Company Develops Natural Way to Fight E coli
  • First 'virophage' could take the fight to viruses
  • Sputnik virophage
  • Virophage - the virus eater
  • Phage Biotech Israel


 This page is dedicated to Steve, of Hutt Street Centre, a Phage devotee, who wants his lovely green and red apples free of antibotics 

Phages vs Fireblight Disease

Development of a bacteriophage-based biopesticide for fire blight

Show simple item record

dc.contributor.author Lehman, Susan M. en_US
dc.date.accessioned 2009-05-28T16:39:34Z
dc.date.available 2009-05-28T16:39:34Z
dc.date.issued 2007-05-28T16:39:34Z
dc.identifier.uri http://hdl.handle.net/10464/1448
dc.description.abstract Fire blight is an economically important disease of apples and pears that is caused by the bacterium Erwinia amylovora. Control of the disease depends on limiting primaly blosson1 infection in the spring, and rapidly removing infected tissue. The possibility of using phages to control E.amylovora populations has been suggested, but previous studies have. failed to show high treatment efficacies. This work describes the development of a phage-based biopesticide that controls E. amylovora populations under field conditions, and significantly reduces the incidence of fire blight. This work reports the first use ofPantoea agglomerans, a non-pathogenic relative ofE. amylovora, as a carrier for E. amylovora.phages. Its role is to support a replicating population of these phages on blossom surfaces during the period when the flowers are most susceptible to infection. Seven phages and one carrier isolate were selected for field trials from existing collections of 56 E. amylovora phages and 249 epiphytic orchard bacteria. Selection of the . /' phages and carrier was based on characteristics relevant to the production and field perfonnance of a biopesticide: host range, genetic diversity, growth under the conditions of large-scale production, and the ability to prevent E. amylovora from infecting pear blossoms. In planta assays showed that both the phages and the carrier make significant contributions to reducirig the development of fire blight symptoms in pear blossoms. Field-scale phage production and purification methods were developed based on the growth characteristics of the phages and bacteria in liquid culture, and on the survival of phages in various liquid media. Six of twelve phage-carrier biopesticide treatments caused statistically signiflcant reductions in disease incidence during orchard trials. Multiplex real-time PCR was used to simultaneously monitor the phage, carrier, and pathogen populations over the course of selected treatments. In all cases. the observed population dynamics of the biocontrol agents and the pathogen were consistent with the success or failure of each treatment to control disease incidence. In treatments exhibiting a significantly reduced incidel1ce of fire blight, the average blossom population ofE.amylovora had been reduced to pre-experiment epiphytic levels. In successful treatments the phages grew on the P. agglomerans carrier for 2 to 3 d after treatment application. The phages then grew preferentially on the pathogen, once it was introduced into this blossom ecosystem. The efficacy of the successful phage-based treatnlents was statistically similar to that of streptomycin, which is the most effective bactericide currently available for fire blight prevention. The in planta behaviour ofE. amylovora was compared to that ofErwinia pyrifoliae, a closely related species that causes fire blight-like synlptoms on pears in southeast Asia. Duplex real-time PCR was used to monitor the population dynamics of both species on single blossonls. E. amylovora exhibited a greater competitive fitness on Bartlett pear blossoms than E. pyrifoliae. The genome ofErwinia phage <l>Ea21-4 was sequenced and annotated. Most of the 8-4.7 kB genome is substantially different from previously described sequences, though some regions are notably similar to Salmonella phage Felix 01 . Putative functions were assigned to approximately 30% of the predicted open reading frames based on amino acid sequence comparisons and N-terminal sequencing of structural proteins. en_US
dc.description.provenance Made available in DSpace on 2009-05-28T16:39:34Z (GMT). No. of bitstreams: 1 developmentofaba00lehmuoft.pdf: 24815096 bytes, checksum: 88d1f3afcd929cc248835d223ec63b9b (MD5) en
dc.language.iso eng en_US
dc.publisher Brock University en_US
dc.subject Fire-blight--Treatment. en_US
dc.subject Bacteriophages. en_US
dc.title Development of a bacteriophage-based biopesticide for fire blight en_US
dc.type Electronic Thesis or Dissertation en_US
dc.degree.name Ph.D. Biological Sciences en_US
dc.degree.level Doctoral en_US
dc.contributor.department Department of Biological Studies en_US
dc.degree.discipline Faculty of Mathematics and Science en_US

Files in this item

Files Size Format View
Brock_Lehman_Susan_2007.pdf 24.81Mb application/pdf View/Open

http://dr.library.brocku.ca/bitstream/handle/10464/1448/Brock_Lehman_Susan_2007.pdf?sequence=1

pdf file with full article

This item appears in the following Collection(s)

  • Ph.D. Biology
Make a Free Website with Yola.