Love Me Love My Phages

  • Home
  • Love Your Phages
  • George Eliava Institute
  • eat-me-the-soviet-method-for-attacking-infection
  • Phage Therapy
  • phage-therapy-and-cholera---1
  • Cocktail That Cures
  • Phage Therapy in Agriculture and Animals - 1
  • Phage Therapy_Past History and Future Prospects
  • bdellovibrio-a-predatory-bacteria -1
  • uk - first-superbug-phage-clinical-trial
  • Bacteriophages and Sleeping Sickness
  • The MRSA Problem
  • The Use of Bacteriophages Against Infections
  • Virises vs Superbugs
  • Bacterias natural born killers
  • The Killers Within Prologue
  • The Killers Within - The Silent War
  • Bacteriophages as Antibiotics
  • The Cocktail That Cures
  • Phage Therapy - Abstracts From The Scientific Area
  • Phage production goes large scale
  • Novel alternatives to antibiotics
  • Phages channel their resources
  • Viral defense against Listeria in Foods
  • Bacteriophage Therapy a Revitalized Therapy
  • US Phage Therapy Clinics in Mexico
  • E coli Phage Therapy Implications
  • Phage Therapy and E coli in Livestock
  • Bacteriophage Therapy in Western Medicine
  • Scientists Discover Exciting New MRSA Fighter
  • The New Antibiotics
  • Support Those Who Help Us Make This Site Possible
  • SCIENCE FRIDAY - MP3 FILES
  • Division M- Bacteriophage
  • A Glossary Defining Some Terms For Phage Biology
  • Bacteriophages on the World Wide Web
  • Major Discoveries Made With Bacteriophages
  • W W C Topley and the Missing Phage Reference
  • Lives At Risk From Drug Resistant Bug
  • A Killer In Our Midst
  • Adelaide RAH Superbug Outbreak Worsens
  • Bug At Adelaide RAH Infects More
  • US Meat Sector Target Of Listeria Technology
  • Microscope Dangers
  • Therapy with a Nonreplicating GM Phage
  • Phage Therapy - The Escherichia coli Experience
  • E-coli Phage Human Safety Tests in Water
  • Thank Yous
  • Phages in Treating Trial of e coli in Chickens
  • Phages_Pseudomonas aeruginosa Septicemia in Mice
  • Hello World
  • Using Phage Viruses to Help Fight Infection
  • Georgia an Unlikely Stronghold for Bacteriophage
  • Bacteriophage method to antimicrobial drugs
  • 48 Hours CBS on Bacteriophages
  • An infant in septic shock _ Commentary
  • An infant in septic shock _ Where Now
  • Hospital horror
  • Anthrax stopper
  • Phage R and D Companies
  • Viruses vs Superbugs
  • The Next Phage
  • Statins Reduce Infection
  • Statins vs Bacteria
  • STATINS REDUCE SEPIS IN DIALYSIS
  • Statins Can Prevent A Second Stroke
  • Contact - Love Me Love My Phages
  • Statins May Help One Brit in Six Reach 100
  • Statins Help Slow Down Multiple Sclerosis
  • New Way To Fight Superbugs inc With Tears
  • Phages vs Fireblight Disease - 1
  • Company Develops Natural Way to Fight E coli
  • First 'virophage' could take the fight to viruses
  • Sputnik virophage
  • Virophage - the virus eater
  • Phage Biotech Israel


Sputnik virophage

http://en.wikipedia.org/wiki/Sputnik_virophage

From Wikipedia, the free encyclopedia 


Sputnik virophage    

Virus classification   

Group: Group I (dsDNA)   

Order: Unassigned   

Family: Unassigned   

Genus: Unassigned   

Species: Sputnik Virophage  

The Sputnik virophage (from "virus" and Greek φάγειν phagein "to eat") has a functional similarity with a bacteriophage. It is an icosahedral subviral agent that is 50 nanometres in size.[1] Sputnik has been found to multiply inside of an Amoeba, although the conditions for this are rather unusual. The Subviral agent is unable to multiply itself inside of the host cell on its own, but when the host cell has been infected sputnik harnesses the viral proteins to rapidly produce new copies of itself. Sputnik has a circular double stranded DNA genome which contains genes able to infect all three domains of life: Eukarya, Archaea and Bacteria. It is associated with the mamavirus, which presumably is related to Acanthamoeba polyphaga mimivirus (APMV). The mimivirus is a giant in the viral world; it has more genes than many bacteria and performs functions that normally occur only in cellular organisms. The mamavirus is even larger than the mimivirus, but the two are very similar in that they form large viral factories and complex viral particles.[2] Virophage growth is deleterious to APMV and results in the production of abortive forms and abnormal capsid assembly of APMV. In one of the experiments done by inoculating A.polyphaga with water containing an original strain of APMV, it was discovered that several capsid layers accumulate unsymmetrically on one side of the viral particle causing the virus to become ineffective. Sputnik decreased the yield of infective viral particle by 70% and also reduced the amoeba lysis by threefold at 24h.[1]

Of the twenty-one predicted protein-coding genes, three are apparently derived from APMV itself, one is a homologue of an archaeal virus, and four others are homologues of proteins in bacteriophages and eukaryotic viruses. Thirteen are ORFans, that is they do not have any detectable homologues in current sequence databases. The Sputnik has a high A + T content (73%) similar to that of APMV.

Several other homologues such as those of a primase–helicase, a packaging ATPase, an insertion sequence transposase DNA-binding subunit, and a Zn-ribbon protein, were detected in the Global Ocean Survey environmental data set, suggesting that virophages could be a currently unknown family of viruses. Considering its functional analogy with bacteriophages, this virus is classified as a virophage (ie a virus that infects other viruses).[3]

Sputnik was found to contain genes that were shared by the mimivirus. These genes could have been acquired by Sputnik after the association of APMV with the host and then interaction between the virophage and the viral host. Recombination within the viral factory might have resulted in the exchange of genes. Sputnik is one of the most convincing pieces of evidence for gene mixing and matching between viruses.

The presence of these genes homologous to the mimivirus in Sputnik suggests that gene transfer between Sputnik and the mimivirus can occur during the infection of Acanthamoeba. Therefore, it is hypothesized that the virophage could be a source of vehicle mediating lateral gene transfer between giant viruses, which constitute a significant part of the DNA virus population in the marine environments. Moreover, the presence of three APMV genes in Sputnik implies that gene transfer between a virophage and a giant virus is crucial to viral evolution.[4]

See also

Virus classification 

Virusoid 

Viroid 

Virus 

WikiSpecies:Virus 

Satellite DNA, Minisatellite, Microsatellite (These should not be confused with Satellite (biology)) 

 References

^ a b Bernard La Scola, Christelle Desnues, Isabelle Pagnier, Catherine Robert, Lina Barrassi, Ghislain Fournous, Michèle Merchat, Marie Suzan-Monti, Patrick Forterre, Eugene Koonin and Didier Raoult (2008). "The virophage as a unique parasite of the giant mimivirus". Nature 454 (7205): 100. doi:10.1038/nature07218. PMID 18690211. 

^ Xie, Yun. Sputnik the virophage: a virus gets a virus.ARS technica. Science Journal. 

^ Scola , B. et al. 2008. The virophage as a unique parasite of the giant mimivirus. Nature 455, 100–104 

^ http://google.com/search/cache?ei=UTF-8&p=virophage&y=Search&xa=fAH7qo6Dzk93kpVWXtGZ.A--%2C1228194443&fr=yfp-t-501&u=www.asm.org/microbe/index.asp%3Fbid%3D61386&w=virophage&d=PFqWc0fiR3Tw&icp=1&.intl=us 

 External links

Viralzone: Sputnik virophage




Make a Free Website with Yola.